Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 11: 597573, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312162

RESUMO

The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, ßTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exemplified by increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site. Insight in their roles in GHR signaling can be applied for cancer and other therapeutic strategies.


Assuntos
Doença Crônica , Regulação da Expressão Gênica , Hormônio do Crescimento Humano/metabolismo , Neoplasias/patologia , Receptores da Somatotropina/metabolismo , Humanos , Neoplasias/metabolismo , Receptores da Somatotropina/genética
3.
Haematologica ; 101(3): 309-18, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26635035

RESUMO

It has been proposed that von Willebrand factor might affect factor VIII immunogenicity by reducing factor VIII uptake by antigen presenting cells. Here we investigate the interaction of recombinant von Willebrand factor with immature monocyte-derived dendritic cells using flow cytometry and confocal microscopy. Surprisingly, von Willebrand factor was not internalized by immature dendritic cells, but remained bound to the cell surface. As von Willebrand factor reduces the uptake of factor VIII, we investigated the repertoire of factor VIII presented peptides when in complex with von Willebrand factor. Interestingly, factor VIII-derived peptides were still abundantly presented on major histocompatibility complex class II molecules, even though a reduction of factor VIII uptake by immature dendritic cells was observed. Inspection of peptide profiles from 5 different donors showed that different core factor VIII peptide sequences were presented upon incubation with factor VIII/von Willebrand factor complex when compared to factor VIII alone. No von Willebrand factor peptides were detected when immature dendritic cells were pulsed with different concentrations of von Willebrand factor, confirming lack of von Willebrand factor endocytosis. Several von Willebrand factor derived peptides were recovered when cells were pulsed with von Willebrand factor/factor VIII complex, suggesting that factor VIII promotes endocytosis of small amounts of von Willebrand factor by immature dendritic cells. Taken together, our results establish that von Willebrand factor is poorly internalized by immature dendritic cells. We also show that von Willebrand factor modulates the internalization and presentation of factor VIII-derived peptides on major histocompatibility complex class II.


Assuntos
Células Dendríticas/imunologia , Fator VIII/imunologia , Cadeias HLA-DRB1/imunologia , Peptídeos/imunologia , Fator de von Willebrand/imunologia , Sequência de Aminoácidos , Apresentação de Antígeno , Sítios de Ligação , Diferenciação Celular , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Endocitose , Fator VIII/metabolismo , Cadeias HLA-DRB1/metabolismo , Humanos , Monócitos/citologia , Monócitos/imunologia , Peptídeos/química , Peptídeos/metabolismo , Cultura Primária de Células , Ligação Proteica , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Fator de von Willebrand/metabolismo
4.
J Biol Chem ; 289(1): 65-73, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24280222

RESUMO

Growth hormone (GH) signaling is required for promoting longitudinal body growth, stem cell activation, differentiation, and survival and for regulation of metabolism. Failure to adequately regulate GH signaling leads to disease: excessive GH signaling has been connected to cancer, and GH insensitivity has been reported in cachexia patients. Since its discovery in 1989, the receptor has served a pivotal role as the prototype cytokine receptor both structurally and functionally. Phosphorylation and ubiquitylation regulate the GH receptor (GHR) at the cell surface: two ubiquitin ligases (SCF(ßTrCP2) and CHIP) determine the GH responsiveness of cells by controlling its endocytosis, whereas JAK2 initiates the JAK/STAT pathway. We used blue native electrophoresis to identify phosphorylated and ubiquitylated receptor intermediates. We show that GHRs occur as ∼500-kDa complexes that dimerize into active ∼900-kDa complexes upon GH binding. The dimerized complexes act as platforms for transient interaction with JAK2 and ubiquitin ligases. If GH and receptors are made in the same cell (autocrine mode), only limited numbers of ∼900-kDa complexes are formed. The experiments reveal the dynamic changes in post-translational modifications during GH-induced signaling events and show that relatively simple cytokine receptors like GHRs are able to form higher order protein complexes. Insight in the complex formation of cytokine receptors is crucially important for engineering cytokines that control ligand-induced cell responses and for generating a new class of therapeutic agents for a wide range of diseases.


Assuntos
Complexos Multiproteicos/metabolismo , Multimerização Proteica/fisiologia , Receptores da Somatotropina/metabolismo , Transdução de Sinais/fisiologia , Animais , Comunicação Autócrina/fisiologia , Células HEK293 , Hormônio do Crescimento Humano/genética , Hormônio do Crescimento Humano/metabolismo , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Complexos Multiproteicos/genética , Fosforilação/fisiologia , Receptores da Somatotropina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo
5.
Biochem J ; 453(2): 231-9, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23581279

RESUMO

Jak2 (Janus kinase 2) initiates the signal transduction of many cytokine receptors. We discovered that Jak2 is SUMOylated on multiple lysine residues by SUMO2/3 (small ubiquitin-related modifier 2/3) chains. Analysis of Jak2 mutants revealed that Jak2 SUMOylation depends on the presence of an active catalytic site. We used the GH (growth hormone) receptor to study the physiological relevance of Jak2 SUMOylation. Both GH stimulation and several other environmental stressors increased Jak2 SUMOylation. Cell fractionation showed that SUMOylated Jak2 is mainly present in the nucleus. The constitutively active V617F Jak2 mutant, implicated in myeloproliferative diseases, was highly SUMOylated in the absence of stimuli. These data provide evidence that Jak2 SUMOylation controls Jak2 shuttling between cytoplasm and nucleus.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Janus Quinase 2/metabolismo , Sumoilação , Animais , Hormônio do Crescimento/metabolismo , Células HEK293 , Humanos , Camundongos , Transporte Proteico
6.
FEBS Lett ; 581(28): 5371-6, 2007 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-17967424

RESUMO

Pan1 is an actin patch-associated protein involved in endocytosis. Our studies revealed that in oleate-grown cells Pan1 is located in the nucleus as well as in patches. One of three putative nuclear localization signals (NLS) of Pan1, NLS2, directed beta-galactosidase (beta-gal) to the nucleus. However, GFP-Pan1(886-1219), containing NLS2, was found in the cytoplasm indicating that it may contain a nuclear export signal (NES). A putative Pan1 NES, overlapping with NLS3, re-addressed NLS(H2B)-NES/NLS3-beta-gal from the nucleus to the cytoplasm. Inactivation of the NES allowed NLS3 to be effective. Thus, Pan1 contains functional NLSs and a NES and appears to shuttle in certain circumstances.


Assuntos
Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Sinais de Exportação Nuclear , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Reporter/genética , Proteínas dos Microfilamentos , Dados de Sequência Molecular , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...